3x^2+320x+42=0

Simple and best practice solution for 3x^2+320x+42=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+320x+42=0 equation:


Simplifying
3x2 + 320x + 42 = 0

Reorder the terms:
42 + 320x + 3x2 = 0

Solving
42 + 320x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
14 + 106.6666667x + x2 = 0

Move the constant term to the right:

Add '-14' to each side of the equation.
14 + 106.6666667x + -14 + x2 = 0 + -14

Reorder the terms:
14 + -14 + 106.6666667x + x2 = 0 + -14

Combine like terms: 14 + -14 = 0
0 + 106.6666667x + x2 = 0 + -14
106.6666667x + x2 = 0 + -14

Combine like terms: 0 + -14 = -14
106.6666667x + x2 = -14

The x term is 106.6666667x.  Take half its coefficient (53.33333335).
Square it (2844.444446) and add it to both sides.

Add '2844.444446' to each side of the equation.
106.6666667x + 2844.444446 + x2 = -14 + 2844.444446

Reorder the terms:
2844.444446 + 106.6666667x + x2 = -14 + 2844.444446

Combine like terms: -14 + 2844.444446 = 2830.444446
2844.444446 + 106.6666667x + x2 = 2830.444446

Factor a perfect square on the left side:
(x + 53.33333335)(x + 53.33333335) = 2830.444446

Calculate the square root of the right side: 53.20192145

Break this problem into two subproblems by setting 
(x + 53.33333335) equal to 53.20192145 and -53.20192145.

Subproblem 1

x + 53.33333335 = 53.20192145 Simplifying x + 53.33333335 = 53.20192145 Reorder the terms: 53.33333335 + x = 53.20192145 Solving 53.33333335 + x = 53.20192145 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-53.33333335' to each side of the equation. 53.33333335 + -53.33333335 + x = 53.20192145 + -53.33333335 Combine like terms: 53.33333335 + -53.33333335 = 0.00000000 0.00000000 + x = 53.20192145 + -53.33333335 x = 53.20192145 + -53.33333335 Combine like terms: 53.20192145 + -53.33333335 = -0.1314119 x = -0.1314119 Simplifying x = -0.1314119

Subproblem 2

x + 53.33333335 = -53.20192145 Simplifying x + 53.33333335 = -53.20192145 Reorder the terms: 53.33333335 + x = -53.20192145 Solving 53.33333335 + x = -53.20192145 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-53.33333335' to each side of the equation. 53.33333335 + -53.33333335 + x = -53.20192145 + -53.33333335 Combine like terms: 53.33333335 + -53.33333335 = 0.00000000 0.00000000 + x = -53.20192145 + -53.33333335 x = -53.20192145 + -53.33333335 Combine like terms: -53.20192145 + -53.33333335 = -106.5352548 x = -106.5352548 Simplifying x = -106.5352548

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.1314119, -106.5352548}

See similar equations:

| (6g-8)(g-9)=0 | | 2+(x-3)2=22 | | 6asenx+a^2+9=0 | | 2+(x-3).2=22 | | 4x^4-12x^3-x^2+15x+6=0 | | X=(97)-((97)(0.0275)) | | 2^1/2x=5-2^3/2 | | X=(1)-((1)(0.0275)) | | 1275=0.5n(1+n) | | 3x+28=x | | 18=1/3x | | -2x+4=-8+19x | | X^2-14x-78=7 | | Y=3/4-7 | | z^6-28z^3+27=0 | | 15=x-36 | | (2x-5/12)=-x/4-5/3 | | log*(2x-5)+log*(3x+7)=4*log*2 | | x=x/5 | | 3ln(x-2)+6=0 | | 7x=x+70 | | 4/5=12/h | | 4/5=h/12 | | f(x)=0.5x^2 | | 3(2y-3)-2y=y-3 | | x/2=xx-3/2x-1 | | 4r+28r=7r+119 | | 6z-12=14+6z | | 50x+250x= | | r^7+7r^6-3r^5+13r^4+2r^3-5r^2-14r+3=0 | | 3x-2(2x+1)=4 | | y=x^2+12x^2 |

Equations solver categories